Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness.
نویسندگان
چکیده
The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity.
منابع مشابه
Effects of magnetic fields on the seed germination and metabolism in two specious of Almond
During the past decade considerable evidence has been accumulated with regard to the biological effects, both in vivo and in vitro, of extremely low frequency electric and magnetic fields, such as those originating from residentially proximate power lines, household electrical wiring and diagnostic apparatus and therapy devices. Also, during the evolution process, all living organisms experienc...
متن کاملFinite Element Method Application in Analyzing Magnetic Fields of High Current Bus Duct
The goal of paper is to present the magnetic field calculations in high current bus ducts. Finiteelement method is used to do this. Bus ducts under study have figure such as circle area. Thecalculations will be using mathematical relations, meshed geometric shape and analyzing them.Geometric mean will help us to determine the value of magnetic field. COMSOL software is appliedfor simulation stu...
متن کاملAnticancer Effects of Moderate Static Magnetic Field on Cancer Cells in Vitro
Background: Expansion of the use of magnetic fields in metals, mining, transport, research, and medicine industries has led to a discussion about the effects of magnetic fields and whether their strength is negligible. The aim of this study was to investigate the effects of magnetic field on the viability and proliferation rate of HeLa cells. Materials and methods: We studied the effects of ma...
متن کاملThree-dimensional calculations of the magnetic fields in a finite superconducting hollow cylinder in an applied axial magnetic field
In this study, a set of self-consistent coupled-integral equations for the local magnetic flux and current distributions in a finite superconducting hollow cylinder under an axial magnetic field has been directly derived by using the Biot-Savart law within the framework of the critical-state model. The equations were first solved numerically in the three-dimensional space before obtaining the h...
متن کاملMeasurement of the Magnetic Fields from High-Voltage (230 kV) Substations in Tehran and Assessment of Their Effects
Introduction: Recent industrial developments in human societies have caused rapid advancements in technologies of production and distribution of electricity, which in turn result in enhancement of power networks and utilization of high voltages. These networks and the high voltages in transfer lines cause the exposure to electric and magnetic fields. In this study, the situation regarding the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Astrobiology
دوره 14 3 شماره
صفحات -
تاریخ انتشار 2014